
Convolutional Matrix Factorization for
Document Context-Aware Recommendation

Donghyun Kim1, Chanyoung Park1, Jinoh Oh1, Sungyoung Lee2, Hwanjo Yu∗1
1Pohang University of Science and Technology (POSTECH), Pohang, South Korea

2Kyung Hee University, Seoul, South Korea
{1kdh5377, 1pcy1302, 1kurin, 1hwanjoyu}@postech.ac.kr, 2sylee@oslab.khu.ac.kr

ABSTRACT
Sparseness of user-to-item rating data is one of the major factors
that deteriorate the quality of recommender system. To handle the
sparsity problem, several recommendation techniques have been
proposed that additionally consider auxiliary information to im-
prove rating prediction accuracy. In particular, when rating data is
sparse, document modeling-based approaches have improved the
accuracy by additionally utilizing textual data such as reviews, ab-
stracts, or synopses. However, due to the inherent limitation of
the bag-of-words model, they have difficulties in effectively utiliz-
ing contextual information of the documents, which leads to shal-
low understanding of the documents. This paper proposes a novel
context-aware recommendation model, convolutional matrix fac-
torization (ConvMF) that integrates convolutional neural network
(CNN) into probabilistic matrix factorization (PMF). Consequently,
ConvMF captures contextual information of documents and further
enhances the rating prediction accuracy. Our extensive evaluations
on three real-world datasets show that ConvMF significantly out-
performs the state-of-the-art recommendation models even when
the rating data is extremely sparse. We also demonstrate that Con-
vMF successfully captures subtle contextual difference of a word
in a document. Our implementation and datasets are available at
http://dm.postech.ac.kr/ConvMF.

Keywords
Collaborative Filtering; Document Modeling; Contexual Informa-
tion

1. INTRODUCTION
The exploding growth of the number of users and items in e-

commerce services increases the sparseness of user-to-item rating
data. Eventually, this sparsity deteriorates the rating prediction ac-
curacy of traditional collaborative filtering techniques [5, 8]. To en-
hance the accuracy, several recommendation techniques had been
proposed that consider not only rating information but also auxil-

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RecSys’16, September 15-19, 2016, Boston, MA, USA
c© 2016 ACM. ISBN 978-1-4503-4035-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2959100.2959165

iary information such as demography of users, social networks, and
item description documents [14, 15, 17, 19, 23, 24].

Recently, approaches based on document modeling methods such
as Latent Dirichlet Allocation (LDA) and Stacked Denoising Auto-
Encoder (SDAE) have been proposed to additionally utilize item
description documents such as reviews, abstracts, or synopses [15,
17, 23, 24]. Specifically, Wang et al. proposed collaborative topic
regression (CTR) that combines topic modeling (LDA) and col-
laborative filtering in a probabilistic approach [23]. Variants of
CTR were proposed, which also integrates LDA into collabora-
tive filtering to analyze item description documents with differ-
ent integration approaches [15, 17]. Most recently, Wang et al.
proposed collaborative deep learning (CDL) that integrates SDAE
into probabilistic matrix factorization (PMF) [20], thereby gener-
ating more accurate latent model in terms of the rating prediction
accuracy [24].

However, existing integrated models do not fully capture doc-
ument information, as they assume the bag-of-words model that
ignores contextual information of documents such as surrounding
words and word orders. For example, suppose that the following
two sentences are given in a document: “people trust the man.”,
“people betray his trust finally.” Since LDA and SDAE consider
the document as a bag of distinguished words, they cannot distin-
guish each occurrence of term “trust”. Precisely, although each oc-
currence of “trust” seems to have almost the same meaning, there
is a subtle syntactic difference between these words – a verb and
a noun, respectively. Such subtle difference within a document is
also a nontrivial factor for deeper understanding of the document,
and further such understanding facilitates improvements in the rat-
ing prediction accuracy.

To address the aforementioned issue, we utilize convolutional
neural network (CNN), which is the state-of-the-art machine learn-
ing methodology that shows high performance for various domains
such as computer vision [13], natural language processing (NLP)
[2, 10, 11], and information retrieval [4, 21]. CNN effectively
captures local features of images or documents through modeling
components such as local receptive fields, shared weights, and sub-
sampling [13]. Thus, the use of CNN facilitates deeper understand-
ing of documents, and generates better latent model than LDA and
SDAE do, especially for items that resort to their description docu-
ments due to the lack of ratings. Moreover, CNN is able to take ad-
vantage of pre-trained word embedding models such as Glove [18]
for deeper understanding of item description documents. Note that
LDA and SDAE cannot exploit pre-trained word embedding mod-
els because they adopt bag-of-words model.

However, existing CNNs are not suitable for recommendation
task, as their objectives are different from the objective of recom-
mendation. Specifically, conventional CNNs mainly solve classifi-

233

http://dm.postech.ac.kr/ConvMF
http://dx.doi.org/10.1145/2959100.2959165


cation task that is to predict labels of words, phrases, or documents.
On the contrary, the objective of recommendation is regarded as a
regression task aiming at accurately approximating ratings of users
on items. Thus, the existing CNNs cannot be directly applied to
our task of recommendation.

To handle the technical issue, we propose a document context-
aware recommendation model, convolutional matrix factorization
(ConvMF), which captures contextual information of item descrip-
tion documents by utilizing convolutional neural network (CNN)
and further enhances the rating prediction accuracy. Precisely, Con-
vMF seamlessly integrates CNN into PMF, which is commonly
used for recommendation tasks. Consequently, the integrated model
follows the recommendation objective, and eventually effectively
utilizes both collaborative information and contextual information.
As a result, ConvMF accurately predicts unknown ratings even
when the rating data is extremely sparse.

To demonstrate the effectiveness of ConvMF, we evaluate Con-
vMF on three different real-world datasets. Our extensive exper-
iments over various sparsenesses of rating datasets demonstrate
that ConvMF significantly outperforms the state-of-the-art mod-
els. The superiority of ConvMF verifies that ConvMF generates
item latent models that effectively reflect contextual information of
item description documents even when the rating data is extremely
sparse. We also qualitatively demonstrate that ConvMF indeed
captures subtle contextual differences of a word in a document.
Furthermore, we investigate whether pre-trained word embedding
model helps improve the rating prediction accuracy of ConvMF.
Detailed experiment results are also available at http://dm.postech.
ac.kr/ConvMF besides our implementation and datasets.

Our contributions are summarized as follows.

• We address limitations of the bag-of-words model based ap-
proaches and develop a novel document context-aware rec-
ommendation model (ConvMF).

• To exploit both ratings and item description documents, we
seamlessly integrate CNN into PMF under probabilistic per-
spective.

• We extensively demonstrate the superiority of ConvMF over
the state-of-the-art models on three real-world datasets with
quantitative and qualitative results.

The remainder of the paper is organized as follows. Section 2
briefly reviews preliminaries on the most representative collabora-
tive filtering technique and CNN. Section 3 introduces an overview
of ConvMF, explains our CNN architecture of ConvMF, and de-
scribes how to optimize ConvMF. Section 4 experimentally evalu-
ates ConvMF and discuss the evaluation results. Section 5 summa-
rizes our contributions and gives future work.

2. PRELIMINARY
In this section, we briefly review matrix factorization (MF) (the

most popular collaborative filtering technique) and convolutional
neural network (CNN).

2.1 Matrix Factorization
Traditional collaborative filtering techniques are categorized into

two categories [5]: memory-based methods (e.g. nearest neigh-
borhood) [3, 7, 12] and model-based methods (e.g. latent factor
model) [12, 20]. In general, model-based methods are known to
generate more accurate recommendation results [12]. Thus in this
section, we describe MF, which is the most popular model-based
method.

The goal of MF is to find latent models of users and items on
a shared latent space in which the strengths of user-item relation-
ships (i.e., rating by a user on an item) are computed by inner prod-
ucts [12]. Suppose that we have N users, M items and a user-item
rating matrix R ∈ RN×M . In MF, the latent models of user i
and item j are represented as k-dimensional models, ui ∈ Rk and
vj ∈ Rk. The rating rij of user i on item j is approximated by the
inner-product of corresponding latent models of user i and item j
(i.e. rij ≈ r̂ij = uT

i vj). A general way of training latent models is
to minimize a loss function L, which consists of sum-of-squared-
error terms between the actual ratings and the predicted ratings and
L2 regularized terms that try to avoid the over-fitting problem as
follows:

L =

N∑
i

M∑
j

Iij(rij − uT
i vj)

2 + λu

N∑
i

‖ui‖2 + λv

M∑
j

‖vj‖2

where Iij is an indicator function such that it is 1 if user i rated
item j and 0 otherwise.

2.2 Convolutional Neural Network
Convolutional neural network (CNN) is a variant of feed-forward

neural networks with the following components: 1) convolution
layer for generating local features, 2) pooling (or sub-sampling)
layer for representing data as more concise representation by se-
lecting only several representative local features (i.e., features hav-
ing the highest score via the activation functions) from the previous
layer, which is usually a convolution layer.

Even though CNN has been originally developed for computer
vision [13], the key idea of CNN has been actively applied to in-
formation retrieval and NLP such as search query retrieval [4, 21],
sentence modeling and classification [10, 11], and other traditional
NLP tasks [2]. Although CNN for NLP tasks requires a significant
amount of modification on the architecture of CNN, it eventually
helps enhance the performance of various NLP tasks.

However, CNN has not yet been actively adopted to the field of
recommender system. To the best of our knowledge, van den Oord
et al. were first to apply CNN to music recommendation [22],
where they analyzed songs in acoustic analysis point of view via
CNN, and proposed a model that predicts the ratings based on the
item latent model obtained by acoustic CNN. However, their CNN
model, designed for acoustic signal processing, is not suitable for
processing documents. Documents and acoustic signals have an in-
herent difference on the quality of surrounding features. A signal
at a certain time is inherently similar to its surrounding signals, i.e.,
the signals that have slight time difference, while a word at a certain
position in the document has a large semantical difference from the
surrounding words. Such difference in the degree of similarity be-
tween surrounding features affects the quality of local features, and
eventually requires different CNN architectures. Furthermore, the
model does not fully reflect the collaborative information. In par-
ticular, the item latent models are mainly determined by the results
of audio signal analysis via CNN rather than collaborative infor-
mation. Thus, the performance of overall recommendation even
does not achieve that of weighted matrix factorization (WMF) [9],
which is one of the conventional MF-based collaborative filtering
techniques dealing with implicit feedback dataset.

3. CONVOLUTIONAL
MATRIX FACTORIZATION

In this section, we provide details of the proposed model, con-
volutional matrix factorization (ConvMF), through three steps: 1)
We introduce the probabilistic model of ConvMF, and describe the

234

http://dm.postech.ac.kr/ConvMF
http://dm.postech.ac.kr/ConvMF


Figure 1: Graphical model of ConvMF model: PMF part in left
(dotted-blue); CNN part in right (dashed-red)

key idea to bridge PMF and CNN in order to utilize both ratings
and item description documents. 2) We explain the detailed ar-
chitecture of our CNN, which generates document latent model by
analyzing item description documents. 3) Finally, we describe how
to optimize latent variables of ConvMF.

3.1 Probabilistic Model of ConvMF
Figure 1 shows the overview of the probabilistic model for Con-

vMF, which integrates CNN into PMF. Suppose we have N users
and M items, and observed ratings are represented by R ∈ RN×M

matrix. Then, our goal is to find user and item latent models (U ∈
Rk×N and V ∈ Rk×M ) whose product (UTV ) reconstructs the
rating matrix R. In probabilistic point of view, the conditional dis-
tribution over observed ratings is given by

p(R|U, V, σ2) =

N∏
i

M∏
j

N(rij |uT
i vj , σ

2)Iij

where N(x|µ, σ2) is the probability density function of the Gaus-
sian normal distribution with mean µ and variance σ2, and Iij is an
indicator function as mentioned in Section 2.1.

As a generative model for user latent models, we place conven-
tional priori, a zero-mean spherical Gaussian prior on user latent
models with variance σ2

U .

p(U |σ2
U ) =

N∏
i

N(ui|0, σ2
UI)

However, unlike the probabilistic model for item latent models
in conventional PMF, we assume that an item latent model is gen-
erated from three variables: 1) internal weights W in our CNN1, 2)
Xj representing the document of item j, and 3) epsilon variable as
Gaussian noise, which enables us to further optimize the item latent
model for the ratings. Thus, the final item latent model is obtained
by the following equations.

vj = cnn(W,Xj) + εj

εj ∼ N(0, σ2
V I)

For each weight wk in W , we place zero-mean spherical Gaussian
prior, the most commonly used prior.

p(W |σ2
W ) =

∏
k

N(wk|0, σ2
W )

Accordingly, the conditional distribution over item latent models
is given by

p(V |W,X, σ2
V ) =

M∏
j

N(vj |cnn(W,Xj), σ
2
V I)

1Detail of W of CNN will be explained in Section 3.2

where X is the set of description documents of items. A document
latent vector obtained from the CNN model is used as the mean of
Gaussian distribution and Gaussian noise of the item is used as the
variance of Gaussian distribution which plays an important role as
a bridge between CNN and PMF that helps to fully analyze both
description documents and ratings.

3.2 CNN Architecture of ConvMF
The objective of our CNN architecture is to generate document

latent vectors from documents of items, which are used to compose
the item latent models with epsilon variables. Figure 2 shows our
CNN architecture that consists of four layers; 1) embedding layer,
2) convolution layer, 3) pooling layer, and 4) output layer.

convolution

max pooling

projection

••• recommendation systems predict ratings accurately •••

embedding layer

convolution layer

pooling layer

document

output layer

Figure 2: Our CNN architecture for ConvMF

Embedding Layer
The embedding layer transforms a raw document into a dense nu-
meric matrix that represents the document for the next convolution
layer. In detail, regarding the document as a sequence of l words,
we represent the document as a matrix by concatenating word vec-
tors of words in the document. The word vectors are randomly ini-
tialized or initialized with pre-trained word embedding model such
as Glove [18]. The word vectors are further trained through opti-
mization process. Then, the document matrix D ∈ Rp×l becomes:

D =

 | | |
· · · wi−1 wi wi+1 · · ·

| | |


where l is the length of the document, and p is the size of embed-
ding dimension for each word wi.

Convolution Layer
The convolution layer extracts contextual features. As we’ve dis-
cussed in Section 2.2, documents are inherently different from sig-
nal processing or computer vision in the nature of contextual in-
formation. Thus, we use the convolution architecture in [2, 11] to
analyze documents properly. A contextual feature cji ∈ R is ex-
tracted by jth shared weight W j

c ∈ Rp×ws whose window size ws
determines the number of surrounding words:

cji = f(W j
c ∗D(:,i:(i+ws−1)) + bjc) (1)

where ∗ is a convolution operator, bjc ∈ R is a bias for W j
c and f

is a non-linear activation function. Among non-linear activation
functions such as sigmoid, tanh and rectified linear unit (ReLU),
we use ReLU to avoid the problem of vanishing gradient, which
causes slow optimization convergence and may lead to a poor local

235



minimum [16, 6]. Then, a contextual feature vector cj ∈ Rl−ws+1

of a document with W j
c is constructed by Eqn.(1):

cj = [ cj1, c
j
2, . . . , c

j
i , . . . , c

j
l−ws+1] (2)

However, one shared weight captures one type of contextual fea-
tures. Thus, we use multiple shared weights to capture multiple
types of contextual features, which enable us to generate contex-
tual feature vectors as many as the number nc of Wc. (i.e. W j

c

where j = 1, 2, ..., nc).

Pooling Layer
The pooling layer extracts representative features from the convo-
lution layer, and also deals with variable lengths of documents via
pooling operation that constructs a fixed-length feature vector. Af-
ter the convolution layer, a document is represented as nc contex-
tual feature vectors, where each contextual feature vector has vari-
able length (i.e., l − ws + 1 contextual feature). However, such
representation imposes two problems: 1) there are too many con-
textual features ci, where most contextual features might not help
enhance the performance, 2) the length of contextual feature vec-
tors varies, which makes it difficult to construct the following lay-
ers. Therefore, we utilize max-pooling, which reduces the repre-
sentation of a document into a nc fixed-length vector by extracting
only the maximum contextual feature from each contextual feature
vector as follows.

df = [max(c1),max(c2), . . . ,max(cj), . . . ,max(cnc)]

where cj is a contextual feature vector of length l−ws+1 extracted
by jth shared weight W j

c .

Output Layer
Generally, at output layer, high-level features obtained from the
previous layer should be converted for a specific task. Thus, we
project df on a k-dimensional space of user and item latent models
for our recommendation task, which finally produces a document
latent vector by using conventional nonlinear projection:

s = tanh(Wf2{tanh(Wf1df + bf1)}+ bf2) (3)

where Wf1 ∈ Rf×nc , Wf2 ∈ Rk×f are projection matrices, and
bf1 ∈ Rf , bf2 ∈ Rk is a bias vector for Wf1 ,Wf2 with s ∈ Rk.

Eventually, through the above processes, our CNN architecture
becomes a function that takes a raw document as input, and returns
latent vectors of each documents as output:

sj = cnn(W,Xj) (4)

where W denotes all the weight and bias variables to prevent clut-
ter and Xj denotes a raw document of item j, and sj denotes a
document latent vector of item j.

3.3 Optimization Methodology
To optimize the variables such as user latent models, item latent

models, weight and bias variables of CNN, we use maximum a
posteriori (MAP) estimation as follows.

max
U,V,W

p(U, V,W |R,X, σ2, σ2
U , σ

2
V , σ

2
W )

= max
U,V,W

[p(R|U, V, σ2)p(U |σ2
U )p(V |W,X, σ2

V )p(W |σ2
W )]

(5)

By taking negative logarithm on Eqn.(5), it is reformulated as

follows.

L(U, V,W ) =

N∑
i

M∑
j

Iij

2
(rij − uTi vj)2 +

λU

2

N∑
i

‖ui‖2

+
λV

2

M∑
j

‖vj − cnn(W,Xj)‖2 +
λW

2

|wk|∑
k

‖wk‖2,

(6)

where λU is σ2/σ2
U , λV is σ2/σ2

V , and λW is σ2/σ2
W .

We adopt coordinate descent, which iteratively optimizes a latent
variable while fixing the remaining variables. Specifically, Eqn.(6)
becomes a quadratic function with respect to U (or V ) while tem-
porarily assuming W and V (or U ) to be constant. Then, the opti-
mal solution of U (or V ) can be analytically computed in a closed
form by simply differentiating the optimization function L with re-
spect to ui (or vj) as follows.

ui ← (V IiV
T + λUIK)−1V Ri (7)

vj ← (UIjU
T + λV IK)−1(URj + λV cnn(W,Xj)) (8)

where Ii is a diagonal matrix with Iij , j = 1, . . . ,M as its diago-
nal elements andRi is a vector with (rij)

M
j=1 for user i. For item j,

Ij and Rj are similarly defined as Ii and Ri, respectively. Eqn.(8)
shows the effect of document latent vector of CNN in generating
the item latent model vj , where λV is a balancing parameter as in
[23].

However, W cannot be optimized by an analytic solution as we
do forU and V becauseW is closely related to the features in CNN
architecture such as max-pooling layers and non-linear activation
functions. Nonetheless, we observe that L can be interpreted as a
squared error function with L2 regularized terms as follows when
U and V are temporarily constant.

E(W ) =
λV

2

M∑
j

‖(vj − cnn(W,Xj))‖2

+
λW

2

|wk|∑
k

‖wk‖2 + constant

(9)

To optimize W , we use back propagation algorithm. (Recall that
W is the weights and biases of each layer.)

The overall optimization process (U, V and W are alternatively
updated) is repeated until convergence. With optimized U , V , and
W , finally we can predict unknown ratings of users on items:

rij ≈ E[rij |uT
i vj , σ

2]

= uT
i vj = uT

i (cnn(W,Xj) + εj)

Recall that vj = cnn(W,Xj) + εj .

Time Complexity Analysis
For each epoch, all user and item latent models are updated in
O(k2nR + k3N + k3M), where nR is the number of observed
ratings. Note that document latent vectors are computed while up-
dating W . Time complexity for updating W is dominated by the
computation of convolution layer, and thus all weight and bias vari-
ables of CNN are updated in O(nc · p · l ·M). As a result, the total
time complexity per epoch isO(k2nR+k3N+k3M+nc ·p·l·M),
and this optimization process scales linearly with the size of given
data.

4. EXPERIMENT
In this section, we evaluate the empirical performance of Con-

vMF on real-world datasets. Our extensive experiment results demon-
strate that 1) ConvMF significantly outperforms other competitors

236



when dataset is extremely sparse, 2) the improvements of ConvMF
over the competitors increase further even when dataset becomes
dense, 3) pre-trained word embedding model helps improve the
performance of ConvMF when dataset is extremely sparse, 4) the
best performing parameters verify that ConvMF well alleviates data
sparsity, and 5) ConvMF indeed captures subtle contextual differ-
ences.

4.1 Experimental Setting

Datasets
To demonstrate the effectiveness of our models in terms of rating
prediction, we used three real-world datasets obtained from Movie-
Lens2 and Amazon3. These datasets consist of users’ explicit rat-
ings on items on a scale of 1 to 5. Amazon dataset contains reviews
on items as item description documents. Since MovieLens does not
include item description documents, we obtained documents (i.e.,
plot summary) of corresponding items from IMDB 4.

Similar to [23] and [24], we preprocessed description documents
for all datasets as follows: 1) set maximum length of raw docu-
ments to 300, 2) removed stop words, 3) calculated tf-idf score for
each word, 4) removed corpus-specific stop words that have the
document frequency higher than 0.5, 5) selected top 8000 distinct
words as a vocabulary, 6) removed all non-vocabulary words from
raw documents. As a result, average numbers of words per docu-
ment are 97.09 on MovieLens-1m (ML-1m), 92.05 on MovieLens-
10m (ML-10m) and 91.50 on Amazon Instant Video (AIV), respec-
tively.

We removed items that do not have their description documents
in each dataset, and specifically for the case of Amazon dataset, we
removed users that have less than 3 ratings. As a result, statistics
of each data show that three datasets have different characteristics
(Table 1). Precisely, even though several users are removed by pre-
processing, Amazon dataset is still extremely sparse compared to
the others.

Dataset # users # items # ratings density

ML-1m 6,040 3,544 993,482 4.641%
ML-10m 69,878 10,073 9,945,875 1.413%

AIV 29,757 15,149 135,188 0.030%

Table 1: Data statistic on three real-world datasets

Competitors and Parameter Setting
We compared two versions of ConvMF with the following base-
lines.

• PMF [20]: Probabilistic Matrix Factorization is a standard
rating prediction model that only uses ratings for collabora-
tive filtering.

• CTR [23]: Collaborative Topic Regression is a state-of-the-
art recommendation model, which combines collaborative
filtering (PMF) and topic modeling (LDA) to use both rat-
ings and documents.

• CDL [24]: Collaborative Deep Learning is another state-of-
the-art recommendation model, which enhances rating pre-
diction accuracy by analyzing documents using SDAE.

• ConvMF: Convolutional Matrix Factorization is our proposed
model.

2http://grouplens.org/datasets/movielens/
3http://jmcauley.ucsd.edu/data/amazon/
4Plot summaries are available at http://www.imdb.com/

• ConvMF+: Convolutional Matrix Factorization with pre-trained
word embedding model is another version of our proposed
model, and we use Glove [18] for pre-trained word embed-
ding model.

We set the size of latent dimension of U and V to 50 (as reported
in [24]) and initialized U and V randomly from 0 to 1. Table 2
shows the best performing values of common parameters (λU , λV )
of each model found by grid search. Since we use explicit datasets,
we set the precision parameter of CTR and CDL to 1 if rij is ob-
served and 0 otherwise. The rest of the CDL parameters were set
as reported in [24].5

ML-1m ML-10m AIV

Model λU λV λU λV λU λV

PMF 0.01 10000 10 100 0.1 0.1
CTR 100 1 10 100 10 0.1
CDL 10 100 100 10 0.1 100

ConvMF 100 10 10 100 1 100
ConvMF+ 100 10 10 100 1 100

Table 2: Parameter Setting of λU and λV

Implementation Detail
We implemented ConvMF using Python and Keras [1] library with
NVidia Geforce TitanX GPU. To train the weights of CNN, we
used mini-batch based RMSprop, and each mini-batch consists of
128 training items. As for the detailed CNN architecture, we used
the following settings: 1) we set the maximum length of docu-
ments to 300. 2-1) ConvMF: we initialized word latent vectors
randomly with dimension size of 200. These word latent vectors
will be trained through the optimization process. 2-2) ConvMF+:
we initialized word latent vectors by pre-trained word embedding
models with dimension size of 200. These word latent vectors will
be trained through the optimization process. 3) In the convolution
layer, we used various window sizes (3, 4, and 5) for shared weights
to consider various length of surrounding words, and we used 100
shared weights per window size. 4) Instead of the L2 regularizer
related to weights of CNN, we used dropout and set dropout rate to
0.2 to prevent CNN from over-fitting.

Evaluation Protocol
To evaluate the overall performance of each model on the real world
datasets, we randomly split each dataset into a training set (80%),
a validation set (10%) and a test set (10%). The training set con-
tains at least a rating on every user and item so that PMF deals
with all users and items. As the evaluation measure, we used root
mean squared error (RMSE), which is directly related to an objec-
tive function of conventional rating prediction model.

RMSE =

√∑N,M
i,j (rij − r̂ij)2

# of ratings

We reported test errors of each model, which gives the lowest val-
idation errors within 200 iterations with early-stopping. For relia-
bility of our results, we repeated this evaluation procedure 5 times
from data split process and we reported mean test errors.

4.2 Experimental Results

1) Quantitative Results on MovieLens and Amazon Datasets
Table 3 shows the overall rating prediction error of ConvMF, Con-
vMF+, and three competitors. Note that “Improve” indicates the
5We tried different settings but the performance was almost the
same.

237



Dataset

Model ML-1m ML-10m AIV

PMF 0.8971 0.8311 1.4118
CTR 0.8969 0.8275 1.5496
CDL 0.8879 0.8186 1.3594

ConvMF 0.8531 0.7958 1.1337
ConvMF+ 0.8549 0.7930 1.1279

Improve 3.92% 2.79% 16.60%

Table 3: Overall test RMSE

Ratio of training set to the entire dataset (density)

Model 20% 30% 40% 50% 60% 70% 80%
(0.93%) (1.39%) (1.86%) (2.32%) (2.78%) (3.25%) (3.71%)

PMF 1.0168 0.9711 0.9497 0.9354 0.9197 0.9083 0.8971
CTR 1.0124 0.9685 0.9481 0.9337 0.9194 0.9089 0.8969
CDL 1.0044 0.9639 0.9377 0.9211 0.9068 0.8970 0.8879

ConvMF 0.9745 0.9330 0.9063 0.8897 0.8726 0.8676 0.8531

Improve 2.98% 3.20% 3.36% 3.41% 3.77% 3.27% 3.92%

Table 4: Test RMSE over various sparseness of training data on ML-1m dataset

0 0.2 0.4 0.6 0.8 1

normalized item index

0

0.2

0.4

0.6

0.8

1

n
u
m

. 
ra

ti
n
g
s
 /
 m

a
x
 n

u
m

. 
ra

ti
n
g
s

ML-1m (sparse)

ML-1m (dense)

ML-10m

AIV

Figure 3: Skewness of the number of ratings
for items on each dataset

1 2 3 4 5

num. ratings

0

0.2

0.4

0.6

0.8

ra
ti
o

 o
f 

it
e

m
s
 l
e

s
s
 t

h
a

n
 n

u
m

. 
ra

ti
n

g
s

ML-1m (sparse)

ML-1m (dense)

ML-10m

AIV

Figure 4: Ratio of items that have less than
num. ratings (N) to each entire dataset

100 200 300

the dimension size of word embedding

1.12

1.13

1.14

1.15

1.16

R
M

S
E

ConvMF

ConvMF+

Figure 5: The effects of the dimension size
of word embedding on Amazon dataset

relative improvements of “ConvMF” over the best competitor. Com-
pared to three models, ConvMF and ConvMF+ achieve significant
improvements on all the datasets.

For MovieLens datasets, which are relatively dense datasets, the
improvements of ConvMF over the best competitor, CDL, are 3.92%
on ML-1m dataset and 2.79% on ML-10m dataset. We also ob-
serve that the performance differences between PMF and the two
competitors are marginal on ML-1m dataset. It implies that given
enough ratings to generate user and item latent models, document
analysis that fails to capture contextual information does not help
generate more accurate latent models. However, significant per-
formance gap between ConvMF and PMF indicates that deeper
understanding of documents helps adjust latent models more accu-
rately even when enough ratings are given.

For Amazon dataset, which is an extremely sparse and skewed
dataset as shown in Figure 3 and 4, the improvement of ConvMF
over the best competitor, CDL, is 16.60%. This improvement is
more substantial compared to the improvements on relatively dense
and balanced MovieLens datasets, which indicates that ConvMF
constructs accurate item latent models by effectively analyzing doc-
uments even with sparse and skewed data. Note that the RMSE of
CTR is higher than that of PMF although CTR additionally uses
item documents. It implies that on such sparse and skewed dataset,
it is likely that item latent models built by the LDA part of CTR
and user latent models built by the PMF part of CTR do not reside
in the same latent space.

2) Quantitative Results Over Various Sparseness on ML-1m
We generate seven additional datasets of different sparsenesses by
randomly sampling from ML-1m dataset. As shown in Table 4,
ConvMF significantly outperforms three competitors over all ranges
of sparseness. Specifically, we observe that improvement of Con-
vMF over the best competitor (CDL) increases consistently from
2.98% to 3.92% when data density increases from 0.93% to 3.71%.
It implies that ConvMF produces more accurate latent models by
exploiting ratings when the number of ratings of each item evenly
increases – the rating data becomes dense whereas the skewness of

λ
v
 (Amazon)

10   100  1000 10000

λ
v
 (ML-1m and ML-10m)

1   10  100 1000

R
e

la
ti
v
e

 I
m

p
ro

v
e

m
e

n
ts

 (
%

)

-5

-4

-3

-2

-1

0

1

2

3

ML-1m

ML-10m

AIV

Figure 6: Relative improvements of ConvMF+ over ConvMF

the rating data is almost consistent, which is supported by Figure 3
and 4. To be precise, while ML-1m (sparse) and ML-1m (dense)
dataset whose training set consists of 20% and 80% of the entire
dataset, respectively, have almost the same skewness over items,
the former has relatively smaller number of ratings on items than
the latter one. The performance of ConvMF consistently increases
as the dataset gets denser, which indicates that CNN of ConvMF is
well integrated into PMF for recommendation task.

3) Impact of Pre-trained Word Embedding Model
Unlike CTR and CDL, ConvMF is able to take advantage of us-

ing pre-trained word embedding models such as Glove [18]. Thus,
we investigate the impact of pre-trained word embedding model
on our recommendation task by initializing the embedding layer of
CNN of ConvMF using the pre-trained word embedding model of
Glove [18].

Table 3 shows marginal changes of ConvMF+ over ConvMF on
three datasets: -0.22%, 0.35% and 0.51% on ML-1m, ML-10m
and AIV dataset, respectively. Note that the sparsity of datasets
is in increasing order of ML-1m, ML-10m and AIV. In spite of

238



0.8

1000

1

100 

λ
u

R
M

S
E

1.2

10  

λ
v

1000

1.4

100 1   10  
1   

0.9

0.95

1

1.05

1.1

1.15

1.2

(a) MovieLens-1m

0.7

100

0.8

10 

R
M

S
E

0.9

λ
u

1  

1

λ
v

1000
100 0.1 10  

1   

0.8

0.82

0.84

0.86

0.88

0.9

0.92

(b) MovieLens-10m

1

10  

1.5

1   

R
M

S
E

λ
u

0.1 

2

λ
v

1000
100 0.01

10  

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(c) Amazon Instant Video

Figure 7: Parameter analysis of λU and λV on three dataset

the marginal changes, we observe the consistent tendency that as
the rating data gets sparser, the pre-trained word embedding model
helps improve the performance of ConvMF. It is because the se-
mantic and syntactic information of pre-trained word embedding
model complement shortage of ratings. We also observe that given
sufficient number of ratings to train latent models, pre-trained word
embedding model rather deteriorates the performance of ConvMF.
In other words, since ratings directly reflect the relationships be-
tween users and items, it is better to fully leverage ratings rather
than to additionally utilize pre-trained word embedding model ob-
tained from external documents when rating data is relatively dense.

Moreover, we investigate relative improvements of ConvMF+
over ConvMF on various λV , a parameter that balances between
the importance of ratings and description documents in ConvMF.
In Figure 6, for MovieLens datasets, since the dataset has relatively
large number of ratings, pre-trained word embedding model does
not have much impact on the performance of ConvMF on various
λV . However, for extremely sparse Amazon dataset, pre-trained
word embedding model indeed affects the performance of Con-
vMF. Specifically, when λV is 100 and 1000, the improvement of
ConvMF+ over ConvMF reaches almost 0.51% and 2.74% with the
same parameter setting whereas the performance of ConvMF+ sud-
denly drops with other λV values. In other words, relatively low or
high λV with pre-trained word embedding model fails to achieve
high performance. This phenomenon implies that latent models are
under-fitted or over-fitted by the word embedding model when rat-
ing data is extremely sparse. Nevertheless, as shown in Figure 6,
given a proper value of λV , adopting pre-trained word embedding
model increases the performance of ConvMF+ when the number of
ratings is insufficient.

4) Parameter Analysis
We investigate the impact of three parameters on the performance
of ConvMF: p (dimension size of word latent vectors), λU and λV .

Figure 5 shows RMSE changes of ConvMF and ConvMF+ ac-
cording to various p on Amazon dataset. Interestingly, in case of
ConvMF, the increase of p from 100 to 300 does not boost the per-
formance of ConvMF, but rather shows degradation. However, in
case of ConvMF+, the increase of p reduces RMSE significantly.
This demonstrates that when dataset is extremely sparse, the per-
formance of ConvMF+ is improved by adopting pre-trained word
embedding model in which the information contained gets richer
as p gets larger.

Figure 7 shows the impact of λU and λV on three real-word
datasets. Regarding the changes of the best performing values of
λU and λV from Figure 7(a) to (c), we observe that when the rating
data becomes sparse, λU decreases while λV increases to produce
the best results. Precisely, the values of (λU , λV ) of ConvMF are

(100, 10), (10 and 100) and (1 and 100) on ML-1m, ML-10m and
AIV, respectively. Note that when λU is high, user latent model
is hardly updated. In other words, a high value of λU implies that
item latent model tend to be projected to the latent space of user
latent model (same applies to λV ). Thus, when λU decreases and
λV increases, user latent models are projected to the latent space of
item latent model whose space is mainly built by description docu-
ments rather than by ratings. These best performing values demon-
strate that ConvMF well alleviates data sparsity by balancing the
importance of ratings and description documents.

Phrase captured by max( ) Phrase captured by max( )

people trust the man 0.0704 betray his trust finally 0.1009

Test phrases for Test phrases for

people believe the man 0.0391 betray hisbelieve finally 0.0682

people faith the man 0.0374 betray his faith finally 0.0693

people tomas the man 0.0054 betray his tomas finally 0.0480

Table 5: Case study on two shared weights of ConvMF

5) Qualitative Evaluation
The performance of ConvMF is affected by the contextual features
extracted by shared weights Wc, and each contextual feature is as-
sociated with a phrase. In this section, we verify whether ConvMF
is able to distinguish subtle contextual differences by comparing
each contextual meaning of phrases captured by the shared weights.

Specifically, as a case study, we select W 11
c and W 86

c from the
model trained on ML-10m dataset, and compare the contextual
meaning of phrases captured by the shared weights (Table 5). The
meaning of “trust” in the two phrases captured by the two shared
weights seem to be similar to each other. However, there is a sub-
tle difference on contextual meaning of the term “trust” in the two
phrases. Indeed, the “trust” in the phrase captured by W 11

c is used
as a verb whereas the “trust” in the phrase captured byW 86

c is used
as a noun. To verify this, we slightly change the term “trust” in the
phrases, and investigate the change of the feature values as shown
in Table 5. When we replace “trust” with “believe” and “faith”
in the phrases captured by W 11

c , the feature value of the former
phrase is higher than that of the latter phrase. However, for the
case of W 86

c , the feature value of the latter phrase is higher than
that of the former phrase. This matches with our expectation that
“believe” is syntactically more similar to the contextual meaning of
“trust” as a verb captured by W 11

c whereas “faith” is syntactically
more similar to the contextual meaning of “trust” as a noun cap-
tured by W 86

c . When we replace “trust” with “tomas”, which has a

239



completely different meaning from “trust”, “tomas” returns lower
values for both W 11

c and W 86
c than “believe” and “faith”.

This comparisons imply that ConvMF distinguishes a subtle con-
textual difference of the term “trust”. As a result, we conclude that
ConvMF captures contextual meaning of words in documents and
can even distinguish subtle contextual difference of the same word
via different shared weights.

5. CONCLUSION AND FUTURE WORK
In this paper, we address that considering contextual information

such as surrounding words and word orders in description doc-
uments provides deeper understanding of description documents,
and we develop a novel document context-aware recommendation
model, ConvMF, that seamlessly integrates CNN into PMF in order
to capture contextual information in description documents for the
rating prediction. Extensive results demonstrate that ConvMF sig-
nificantly outperforms the state-of-the-art competitors, which im-
plies that ConvMF well deals with the sparsity problem with con-
textual information. Moreover, since ConvMF is based on PMF,
which is the standard MF-based recommendation model, ConvMF
is able to be extended to combining other MF-based recommenda-
tion models such as SVD++ [12] that only consider ratings.

As a next research direction, since it is widely known that un-
supervised pre-training on deep neural network has much impact
on performance, we try to develop convolutional autoencoder for
description documents. By unsupervised way, it enables us to pre-
train not only the weight variables of the embedding layer but also
all the remaining weight variables of the CNN part of ConvMF. We
expect that this unsupervised pre-training by the autoencoder sig-
nificantly boosts the performance of recommendation when rating
data is extremely sparse.

6. ACKNOWLEDGMENTS
This research was supported by Next-Generation Information

Computing Development Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Education,
Science and Technology (No. 2012M3C4A7033344) and the ICT
R&D program of MSIP/IITP [B0101-15-0307, Basic Software Re-
search in Human-level Lifelong Machine Learning (Machine Learn-
ing Center)] and the Industrial Core Technology Development Pro-
gram (10049079, Development of Mining core technology exploit-
ing personal big data) funded by the Ministry of Trade, Industry
and Energy (MOTIE, Korea)

7. REFERENCES
[1] F. Chollet. Keras. https://github.com/fchollet/keras, 2015.
[2] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and

P. Kuksa. Natural language processing (almost) from scratch. Journal
of Machine Learning Research (JMLR), 12:2493–2537, Nov. 2011.

[3] M. Deshpande and G. Karypis. Item-based top-n recommendation
algorithms. ACM Transactions on Information Systems,
22(1):143–177, Jan. 2004.

[4] J. Gao, P. Pantel, M. Gamon, X. He, and L. Deng. Modeling
interestingness with deep neural networks. In Proceedings of the
2014 Empirical Methods in Natural Language Processing (EMNLP),
pages 2–13, 2014.

[5] A. T. Gediminas Adomavicius. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 17(6):734–749, June 2005.

[6] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural
networks. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics (AISTATS-11), volume 15,
pages 315–323, 2011.

[7] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An
algorithmic framework for performing collaborative filtering. In
Proceedings of the 22nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
SIGIR ’99, pages 230–237, New York, NY, USA, 1999. ACM.

[8] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl.
Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems, 22(1):5–53, Jan. 2004.

[9] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit
feedback datasets. In Proceedings of the 8th IEEE International
Conference on Data Mining, ICDM ’08, pages 263–272,
Washington, DC, USA, 2008. IEEE Computer Society.

[10] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional
neural network for modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics
(ACL), June 2014.

[11] Y. Kim. Convolutional neural networks for sentence classification. In
Proceedings of the 2014 Empirical Methods in Natural Language
Processing (EMNLP), pages 1746–1751, 2014.

[12] Y. Koren. Factorization meets the neighborhood: A multifaceted
collaborative filtering model. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’08, pages 426–434, New York, NY, USA, 2008.
ACM.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. In Intelligent Signal
Processing, pages 306–351. IEEE Press, 2001.

[14] S. Li, J. Kawale, and Y. Fu. Deep collaborative filtering via
marginalized denoising auto-encoder. In Proceedings of the 24th
ACM International on Conference on Information and Knowledge
Management, CIKM ’15, pages 811–820, New York, NY, USA,
2015. ACM.

[15] G. Ling, M. R. Lyu, and I. King. Ratings meet reviews, a combined
approach to recommend. In Proceedings of the 8th ACM Conference
on Recommender Systems, RecSys ’14, pages 105–112, New York,
NY, USA, 2014. ACM.

[16] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities
improve neural network acoustic models. In International
Conference on Machine Learning Workshop on Deep Learning for
Audio, Speech, and Language Processing, 2013.

[17] J. McAuley and J. Leskovec. Hidden factors and hidden topics:
Understanding rating dimensions with review text. In Proceedings of
the 7th ACM Conference on Recommender Systems, RecSys ’13,
pages 165–172, New York, NY, USA, 2013. ACM.

[18] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors
for word representation. In Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, 2014.

[19] S. Purushotham, Y. Liu, and C.-C. J. Kuo. Collaborative topic
regression with social matrix factorization for recommendation
systems. In Proceedings of the 29th International Conference on
Machine Learning (ICML), pages 759–766, 2012.

[20] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In
Advances in Neural Information Processing Systems, volume 20,
2008.

[21] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. A latent semantic
model with convolutional-pooling structure for information retrieval.
In Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management, CIKM ’14,
pages 101–110, New York, NY, USA, 2014. ACM.

[22] A. van den Oord, S. Dieleman, and B. Schrauwen. Deep
content-based music recommendation. In Advances in Neural
Information Processing Systems 26, pages 2643–2651. Curran
Associates, Inc., 2013.

[23] C. Wang and D. M. Blei. Collaborative topic modeling for
recommending scientific articles. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’11, pages 448–456. ACM Press, August 2011.

[24] H. Wang, N. Wang, and D.-Y. Yeung. Collaborative deep learning for
recommender systems. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’15, pages 1235–1244, New York, NY, USA, 2015. ACM.

240

https://github.com/fchollet/keras

	Introduction
	Preliminary
	Matrix Factorization
	Convolutional Neural Network

	ConvolutionalMatrix Factorization
	Probabilistic Model of ConvMF
	CNN Architecture of ConvMF
	Optimization Methodology

	Experiment
	Experimental Setting
	Experimental Results

	Conclusion and Future Work
	Acknowledgments
	References



